Test Object Electrical Size and its Implication on Pattern Sampling

As the electrical size of a test object increases so does the complexity of its antenna pattern. The antenna pattern complexity affects the number of orientations necessary to determine minimum immunity and maximum emission. This has implications for EMC standards. If the true immunity minimum or emission maximum is to be found, then a sufficient number of samples (orientations) over the antenna pattern need to be taken. If fewer samples are to be used (e.g., the four orientations presently recommended by 61000-4-3), then the difference between the low sample number estimate and true value needs to be recognized and possibly quantified. Examples given below show that for modest sized test objects, for example 50 cm in diameter, maximum coupling may be underestimated by up to 4 dB for present test methods (IEC 61000-4-3) and frequency ranges (up 1000 MHz) and up to 6 dB if these methods were to be extended to 5 GHz. The difference increases to over 7 dB if we extend to 20 GHz. This suggests that including the effect of test object size into present standards should be considered.

The remainder of this note will detail these issues. Only far-field patterns are considered. Some suggestions as to how electrical size could be incorporated into a standard are given.

Electrical Size of a Test Object

The electrical size ka of a test object is defined by the wave number k (= 2π/λ, λ is the wavelength) and the radius a of the minimum sphere that fully encloses the test object. A test object is considered electrically large if ka > 1 and electrically small if ka ≤ 1. Electrically small test objects will have simple dipole patterns. Electrically large test objects can have significantly more complicated patterns with multiple lobes.

Table 1 below gives some examples of the minimum sphere radius a and diameter d (= 2a) versus frequency for the transition point from electrically small to large, namely, for ka = 1.

Table 1: Electrically Small to Large Transition Dimensions

	Frequency (MHz)
	k (1/m)
	ka
	a (cm)
	d (cm)

	30
	0.63
	1.0
	159.2
	318.3

	100
	2.09
	1.0
	47.8
	95.5

	200
	4.19
	1.0
	23.9
	47.7

	500
	10.47
	1.0
	9.6
	19.1

	1000
	20.94
	1.0
	4.8
	9.6

	2000
	41.89
	1.0
	2.4
	4.8

	5000
	104.72
	1.0
	0.9
	1.9

	10000
	209.44
	1.0
	0.5
	1.0

	20000
	418.88
	1.0
	0.2
	0.5


Table 1 indicates that even at 500 MHz, well within the frequency range covered by current immunity and emission standards, many test objects are electrically large (major dimension > 19.1 cm). If cables are included as part of the test object then the transition would occur at even lower frequencies. 

Antenna Pattern

The condition ka > 1 is necessary for a test object to have a complex, non-dipole like pattern but it is not sufficient. An electrically large test object can have a dipole-like pattern if so designed. However, most EMC test objects are unintentional receivers and emitters not designed to have a particular antenna pattern. Thus, they will likely have fairly random patterns with the complexity dependent on electrical size.

Antennas are reciprocal devices. This means that a test object’s receiving pattern is the same as its emitting pattern for a given load/source configuration. However, it is unlikely that the load configuration that is the most sensitive to interference when receiving will be the same as source configuration that produces the strongest emissions when transmitting. Thus, in general it is not possible to determine the configuration that produces maximum emissions and then use this as the configuration to test for minimum immunity. Both immunity and emissions must be independently tested. Alternately stated, the device antenna pattern is reciprocal but the device function is not.

Antenna Pattern Sampling

The number of independent samples Ns necessary to determine the antenna pattern increases with frequency. To determine the full three dimensional pattern for a test object we need
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The interpretation for the electrically small case, Ns = 12, is that the test object will behave like 6 independent dipoles (3 electric and 3 magnetic) each with a real and complex part (amplitude and phase).

Note that the sample number grows as the square of the electrical size. Table 2 gives the number of independent samples required to determine the antenna pattern for a test object of diameter 50 cm (a = 25 cm).

Table 2: Independent Samples for a 50 cm Diameter Test Object

	Frequency (MHz)
	k (1/m)
	a
	ka
	Ns

	30
	0.63
	0.25
	0.16
	12

	100
	2.09
	0.25
	0.52
	12

	200
	4.19
	0.25
	1.05
	13

	500
	10.47
	0.25
	2.62
	48

	1000
	20.94
	0.25
	5.23
	152

	2000
	41.89
	0.25
	10.47
	522

	5000
	104.72
	0.25
	26.18
	2951

	10000
	209.44
	0.25
	52.36
	11385

	20000
	418.88
	0.25
	104.72
	44703


Thus, for our 50 cm diameter test object we need 12 independent orientations at 30 MHz increasing to 152 independent orientations at 1000 MHz to determine the full pattern and the direction of maximum reception.

Effect of Reduced Sample Size

The number of independent samples given above fully determines the antenna pattern and thus the maximum directivity of the test object as antenna. If a reduced sample size is used, then we expect that the probability that we will find the orientation yielding maximum directivity will be less than one. Alternately stated, the fewer the number of independent directions tested the lower the likelihood that minimum immunity or maximum emission will be found.

One way to quantify the effect of reduced sample size is to examine the expected value for the maximum directivity as a function sample size. Maximum directivity Dmax determines both maximum received power Pmax and maximum radiated electric field Emax via simple antenna equations:
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where η is the free space wave impedance (= 120π) and r is the distance from the source. In the receiving case (immunity), an incident power density of 
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is assumed, and in the transmitting case (emission), a total radiated power P0 is assumed. If a reduced sample size is used, then the orientation that yields maximum coupling for the reduced sample set will be an estimate Dmax,est for the true maximum directivity. Thus the ratio
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is a good metric for quantifying the effect of a reduced sample size. For unintentional emitters, a good estimate for the maximum directivity as a function of sample size can be derived by assuming that the coefficients of the modal expansion of the source are randomly distributed [1]. The details are given in the attached appendices with the result that
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This model is idealized in that it assumes that the distribution function for the field statistics is independent of orientation. More likely is that some global pattern will be imposed on the distribution, such as, apertures only on one side of a box. This will result in a local mean that is different as the box is rotated. However, the basic results regarding variations due to reduced sampling should be similar. 

For the electrically large case, the ratio of the expected values for the maximum directivity for the full sample size Ns and the reduced sample size Nest (Nest < Ns) is given by
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This can be converted to dB to give an estimate for the likely error using the smaller sample size. This ratio quantifies the expected offset between the true received or emitted power and reduced sample value and will be designated Δrs (rs = reduced sample)

Consider the effect of testing four test object faces, as is presently used in IEC 61000-4-3. Using the same 50 cm diameter test object as above, we find the error estimates as a function of frequency given in Table 3.

Table 3: Difference in Maximum Directivity for 4 versus Ns 

Independent Samples for a 50 cm Diameter Test Object

	Frequency (MHz)
	k (1/m)
	a
	ka
	Ns
	Nest
	Δrs

	30
	0.63
	0.25
	0.16
	12
	4
	-

	100
	2.09
	0.25
	0.52
	12
	4
	-

	200
	4.19
	0.25
	1.05
	13
	4
	1.8

	500
	10.47
	0.25
	2.62
	48
	4
	3.3

	1000
	20.94
	0.25
	5.23
	152
	4
	4.3

	2000
	41.89
	0.25
	10.47
	522
	4
	5.1

	5000
	104.72
	0.25
	26.18
	2951
	4
	6.1

	10000
	209.44
	0.25
	52.36
	11385
	4
	6.8

	20000
	418.88
	0.25
	104.72
	44703
	4
	7.3


This table suggests that only testing four orientations underestimates coupling by approximately 3 dB at 500 MHz and 4 dB at 100 MHz. If the present method were to be extended to 5 GHz the difference would be approximately 6 dB. At 20 GHz this increases to 7.3 dB.

The example given in Table 3 is for a 50 cm diameter test object. Most EMC test objects have cables etc. associated with them which significantly increase their size. Table 4 gives error estimates for a 1 m diameter test object.

Table 4: Difference in Maximum Directivity for 4 versus Ns 

Independent Samples for a 1.0 m Diameter Test Object

	Frequency (MHz)
	k (1/m)
	a
	ka
	Ns
	Nest
	Δrs

	30
	0.63
	0.5
	0.16
	12
	4
	-

	100
	2.09
	0.5
	0.52
	12
	4
	1.8

	200
	4.19
	0.5
	1.05
	13
	4
	2.9

	500
	10.47
	0.5
	2.62
	48
	4
	4.3

	1000
	20.94
	0.5
	5.23
	152
	4
	5.1

	2000
	41.89
	0.5
	10.47
	522
	4
	5.9

	5000
	104.72
	0.5
	26.18
	2951
	4
	6.8

	10000
	209.44
	0.5
	104.72
	44703
	4
	7.3

	20000
	418.88
	0.5
	209.44
	177135
	4
	7.8


The larger test object size increases the value by which four orientations underestimates the maximal coupling.

Recommendations

The electrical size of the test object determines the likely complexity of its antenna pattern and thus how many independent orientations are needed to estimate maximum coupling or maximum emission. At present, emission and immunity standards make no use of the physical and electrical size of the test object when specifying the test configuration and number of orientations to be tested. The above discussion suggests that this may result in underestimating maximum coupling to and from a device. The problem will be accentuated by higher frequencies. Possible solutions include:

· Require that Ns independent orientations be used to determine minimum immunity and maximum emission.

· Require that a sample size dependent buffer to the standard limit be met if a reduced sample size is to be used. For example, if only four independent orientations are to be used for a 50 cm diameter test object, then the standard limit minus 4.3 dB is used as the pass/fail level.

· Require that the electrical size and number of orientations be noted in the test report and their possible implications on test results.

· Ignore antenna pattern complexity and assume that good engineers will find orientations reasonably close to the orientation yielding maximum coupling. 
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Appendix A

The expected value for the maximum directivity of an unintentional emitter may be estimated by evaluating the far-field form of the spherical mode expansion of the emitter under the assumption that the expansion coefficients are independent random variables. We begin with the general form for the far-field pattern which may be found in various texts (e.g., Ch. 2 in [2])
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where the spherical coordinate system is defined in the usual manner, 
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 where a is the radius of the minimum sphere enclosing the emitter (it is assumed the spherical coordinate system is centered in this sphere), 
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 are the far field (large argument) forms of the (dimensionless) power-normalized spherical wave functions [2]. This convention yields the simple expression
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for the total radiated power Prad from the emitter. In general the summation over n goes to infinity, however, spherical wave functions with indices n > ka are cut-off and will not contribute in the far-field and thus the series can be truncated. The total number of modes Nm for the truncated series is
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The number of samples Ns to determine the wave coefficients is twice Nm since each coefficient has an independent real and imaginary part.

Directivity D is the sum of the co- and cross-polarized terms [2-3]
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For unintentional emitters the mean values of the co- and cross will be equal and since the mean value of D is unity we have
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Returning to equation (A1), the field components can be written
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For an unintentional emitter we will assume that that the real and imaginary parts of 
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 are independent and Gaussian distributed with zero mean. Under this assumption the field components will be chi square distributed with two degrees of freedom. The directivities Dco and Dcross will be similarly distributed. In Appendix B we show that the expected value for the maximum over Ns samples of a chi square with two degrees freedom distribution is (using Dco as an example)
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The summation can be approximated (e,g., [4] eq. 0.131) and substituting the expected value of Dco from (A5) yields
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This is the result for ka > 1 given in (9) noting that Ns = 2Nm and N = ka in (A3). For ka = 1 (Ns = 12), (A7) yields 
[image: image22.wmf]55

.

1

max

,

»

co

D

. A physical interpretation of Ns = 12 for 
[image: image23.wmf]1

£

ka

 is that the real and imaginary parts of 6 dipole moments (3 electric and 3 magnetic) yield 12 independent radiators. This result is also very near the directivity of a single short dipole (D = 1.5). Thus, using 1.55 for electrically small emitters in (9) results in a continuous function and should give good results.

The upper bound given in (8) is derived in [2] (eq. 2.225). Directivity is expressed as the ratio of the radiated power at a given angle and distance (using A1) to the total radiated power divided by the total solid angle (using (A2). An application of the Cauchy-Schwartz inequality yields a sum over the number of modes (A3) which is reduced by a factor of two due to polarization mismatch to the spherical modes. This yields (8) once (ka) is substituted for N.

The result for a planar cut is found in a similar manner. If we orient the coordinates so that the (r,φ) plane coincides with the cut, then we need only account for the 2N+1 φ-dependent modes. The number of complex coefficients to be determined is again twice this number, Nc = 2(2N+1). The received power will again be chi square distributed with two degrees of freedom. Thus, (A7) yields
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for ka > 1. Taking the limit at ka = 1 (Nc = 6) as the approximation for electrically small emitters yields (11). A similar result for both polarizations over three orthogonal cuts N6c results if we take six times Nc (3 cuts times 2 polarizations) minus twenty-four (6 intersection points times 2 polarizations times 2 for the real and imaginary parts), i.e 
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Appendix B

Given a probability distribution f(x) with cumulative distribution F(x), then the probability that the maximum of f(x) over N samples will be less than x is given by 
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For the chi square distribution with two degrees of freedom with mean and standard deviation 
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Substituting 
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and expanding the term in brackets in a binomial series yields
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The factor 
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. Letting n = m+1 and reordering the summation gives
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where we have applied a binomial summation result (e.g., eq. (0.155-4) in [4]).
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